Given a directed, acyclic graph ofN
nodes. Find all possible paths from node0
to nodeN-1
, and return them in any order.
The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []]
Output: [[0,1,3],[0,2,3]]
Explanation: The graph looks like this:
0--->1
| |
v v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
- The number of nodes in the graph will be in the range
[2, 15]
. - You can print different paths in any order, but you should keep the order of nodes inside one path.
Backtracking,由于可能存在环路,所以要使用一个boolean数组记录各个点是否已经遍历过。
class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
List<List<Integer>> res = new ArrayList<>();
if(graph == null || graph.length == 0)
return res;
List<Integer> line = new ArrayList<Integer>();
boolean[] visited = new boolean[graph.length];
line.add(0);
visited[0] = true;
helper(res, line, 0, visited, graph, graph.length - 1);
return res;
}
public void helper(List<List<Integer>> res, List<Integer> line, int start, boolean[] visited, int[][] graph, int target) {
if(start == target) {
res.add(new ArrayList<Integer>(line));
return;
}
int[] next = graph[start];
for(int n: next) {
if(visited[n])
continue;
line.add(n);
visited[n] = true;
helper(res, line, n, visited, graph, target);
visited[n] = false;
line.remove(line.size() - 1);
}
}
}