Given two integersL
andR
, find the count of numbers in the range[L, R]
(inclusive) having a prime number of set bits in their binary representation.
(Recall that the number of set bits an integer has is the number of1
s present when written in binary. For example,21
written in binary is10101
which has 3 set bits. Also, 1 is not a prime.)
Example 1:
Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)
按照要求算,没啥说的
class Solution {
public int countPrimeSetBits(int L, int R) {
int count = 0;
for(int i = L; i <= R; i++) {
if(isPrime(getSetBitCount(i)))
count++;
}
return count;
}
public boolean isPrime(int num) {
if(num <= 1)
return false;
for(int i = 2; i < num; i++) {
if(num % i == 0)
return false;
}
return true;
}
public int getSetBitCount(int num) {
int count = 0;
for(int i = 0; i < 32; i++) {
if(((num >> i) & 1) == 1)
count++;
}
return count;
}
}